Logo
Publication
  • All
  • 2025-2021
  • 2020-2016
  • 2015-2011
  • 2010-2006
  • 2005-2001
  • 2000-1996
95. Discovery of a novel methionine biosynthetic route via O-phospho-l-homoserine.
F. Hasebe, K. Adachi, C. Maruyama, Y. Hamano  

Appl. Environ. Microbiol., In press (2024)

DOI: 10.1128/aem.01247-24
94. Ion transfer mechanism of fluorescence-labeled octa-arginine on model biomembrane surfaces.
H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano, H. Nagatani  

J. ELECTROANAL. CHEM., Volume 970, 118545 (2024)

DOI: 10.1016/j.jelechem.2024.118545
93. Cell-penetrating activity of a short-chain ε-poly-L-α- lysine.
K. Kaneda, Y. Takeuchi, K. Yamanaka, F. Hasebe, C. Maruyama & Y. Hamano,  

J. Biosci. Bioeng., 138, 249-253 (2024)

DOI: 10.1016/j.jbiosc.2024.06.006
92. Separation of an ε-poly-L-lysine derivative by solvent extraction under a controlled interfacial potential difference.
H. Katano, M. Maruyama, K. Uematsu, C. Maruyama & Y. Hamano,  

Anal. Sci., 40(1), 47-52 (2024)

DOI: 10.1007/s44211-023-00428-z
91. Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides.
W. Xiao, T. Tsunoda, C. Maruyama, Y. Hamano, Y. Ogasawara & T. Dairi,  

Biosci. Biotechnol. Biochem., 87(11), 1316-1322 (2023)

DOI: 10.1093/bbb/zbad106
90. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis.
C. Maruyama & Y. Hamano,  

Methods Mol. Biol., 2670, 3-16 (2023)

DOI: 10.1007/978-1-0716-3214-7_1
89. Phase transfer mechanisms of fluorophore-labeled cell-penetrating peptide ε-poly-L-α-lysine at liquid|liquid interfaces.
H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano & H. Nagatani,  

Electrochimica Acta, Available online 22 June, 142769 (2023)

DOI: 10.1016/j.electacta.2023.142769
88. Constitutive and high gene expression in the diaminopimelate pathway accelerates ε-poly-L-lysine production in Streptomyces albulus.
F. Hasebe, K. Adachi, K. Yamanaka, T. Oikawa, C. Maruyama & Y. Hamano,  

J. Antibiot., 76(9), 522-531 (2023)

DOI: 10.1038/s41429-023-00636-9
87. N-Formimidoylation/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry.
YL. Wang, CY. Chang, NS. Hsu, IW. Lo, KH. Lin, CL. Chen, CF. Chang, ZC. Wang, Y. Ogasawara, T. Dairi, C. Maruyama, Y. Hamano, TL. Li,  

Nature Communications., 14, 2528 (2023)

DOI: 10.1038/s41467-023-38218-w
86. Mechanisms of Sugar Aminotransferase-like Enzymes to Synthesize Stereoisomers of Non-proteinogenic Amino Acids in Natural Product Biosynthesis.
S. Kurosawa, H. Okamura, A. Yoshida, T. Tomita, Y. Sone, F. Hasebe, T. Shinada, H. Takikawa, S. Kosono, M. Nishiyama,

ACS Chem. Biol., 18(2), 385-395 (2023)

DOI: 10.1021/acschembio.2c00823
85. Mechanism of S-Adenosyl-l-methionine C-Methylation by Cobalamin-dependent Radical S-Adenosyl-l-methionine Methylase in 1-Amino-2-methylcyclopropanecarboxylic Acid Biosynthesis.
F. Kudo, A. Minato, S. Sato, N. Nagano, C. Maruyama, Y. Hamano, J. Hashimoto, I. Kozone, K. Shin-ya, and T. Eguchi,

Org. Lett., 24(49), 8975-8979 (2022)

DOI: 10.1021/acs.orglett.2c03555
84. Reaction Mechanism of Ancestral l-Lys α-Oxidase from Caulobacter Species Studied by Biochemical, Structural, and Computational Analysis.
T. Motoyama, Y. Yamamoto, C. Ishida, F. Hasebe, Y. Kawamura, Y. Shigeta, S. Ito, and S. Nakano,

ACS Omega, 7(48), 44407-44419 (2022)

DOI: 10.1021/acsomega.2c06334
83. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Y. Takeuchi, K. Ushimaru, K. Kaneda, C. Maruyama, T. Ito, K. Yamanaka, Y. Ogasawara, H. Katano, Y. Kato, T. Dairi, Y. Hamano,

Commun. Biol., 5, 1132 (2022)

DOI: 10.1038/s42003-022-04110-4
82. Bioavailability of Tauropine After Oral Ingestion in Mouse.
T. Ito, K. H. Nguyen, C. Maruyama, Y. Hamano, S. Murakami, S. W. Schaffer,

Adv. Exp. Med. Biol., 1370, 137-142 (2022)

DOI: 10.1007/978-3-030-93337-1_13
81. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination.
S. Kurosawa, F. Hasebe, H. Okamura, A. Yoshida, K. Matsuda, Y. Sone, T. Tomita, T. Shinada, H. Takikawa, T. Kuzuyama, S. Kosono, M. Nishiyama,

J. Am. Chem. Soc., 144, 16164−16170 (2022)

DOI: 10.1021/jacs.2c07243
80. Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity.
T. Okamoto, K. Yamanaka, Y. Hamano, S. Nagano, T. Hino,

Biochem. and Biophys. Res. Commun., 596, 43-48 (2022)

DOI: 10.1016/j.bbrc.2022.01.053
79. Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis.
K. Yamanaka, R. Ozaki, Y. Hamano, T. Oikawa,

Front Microbiol., 12, 686023-686023, (2021)

DOI: 10.3389/fmicb.2021.686023
78. MetW regulates the enzymatic activity of MetX in Pseudomonas.
F. Hasebe,

Biosci. Biotechnol. Biochem., 85, 351-358 (2021)

DOI: 10.1093/bbb/zbaa044
77. CRISPR/Cas9-mediated disruption of the PYRROLIDINE KETIDE SYNTHASE gene reduces the accumulation of tropane alkaloids in Atropa belladonna hairy roots.
F. Hasebe, H. Yuba, T. Hashimoto, K. Saito, N. Funa, and T. Shoji,

Biosci. Biotechnol. Biochem., 85, 2404–2409 (2021)

DOI: 10.1093/bbb/zbab165
76. Reconstruction of hyper‐thermostable ancestral L‐amino acid oxidase to perform deracemization to D‐amino acids.
C. Ishida, R. Miyata, F. Hasebe, A. Miyata, S. Kumazawa, S. Ito, and S. Nakano,

ChemCatChem., 13, 5228-5235 (2021)

DOI: 10.1002/cctc.202101296
75. Catalytic Mechanism of Ancestral L-Lysine Oxidase Assigned by Sequence Data Mining.
S. Sugiura, S. Nakano, M. Niwa, F. Hasebe, D. Matsui, and S. Ito,

J. Biol. Chem., 297,101043 (2021)

DOI: 10.1016/j.jbc.2021.101043
74. Chemoenzymatic synthesis of 3-ethyl-2,5-dimethylpyrazine by L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate CoA ligase/L-threonine aldolase.
T. Motoyama, S. Nakano, F. Hasebe, R. Miyata, S. Kumazawa, N. Miyoshi, and S. Ito,

Commun. Chem., 4, 108 (2021)

DOI: 10.1038/s42004-021-00545-8
73. tRNA-dependent amide bond-forming enzymes in peptide natural product biosynthesis.
C. Maruyama and Y. Hamano,

Curr. Opin. Chem. Biol., 59, 164-171 (2020)

DOI: 10.1016/j.cbpa.2020.08.002.
72. The stereocontrolled biosynthesis of mirror-symmetric 2,4-diaminobutyric acid homopolymers is critically governed by adenylation activations.
K. Yamanaka, H. Fukumoto, M. Takehara, Y. Hamano, T. Oikawa,

ACS Chem. Biol., 7, 1967-1973 (2020)

DOI: 10.1021/acschembio.0c00321.
71. C-Methylation of S-adenosyl-L-methionine occurs prior to cyclopropanation in the biosynthesis of 1-amino-2-methylcyclopropanecarboxylic acid (norcoronamic acid) in a bacterium.
C. Maruyama, Y. Chinone, S. Sato, F. Kudo, K. Ohsawa, J. Kubota, J. Hashimoto, I. Kozone, T. Doi, K. Shin-Ya, T. Eguchi, and Y. Hamano,

Biomolecules, 10, E775 (2020).

DOI: 10.3390/biom10050775.
70. Enhancement of metabolic flux toward ε-poly-L-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus.
K. Yamanaka, Y. Hamano, and T. Oikawa,

J. Biosci. Bioeng., 129, 558-564 (2020).

DOI: 10.1016/j.jbiosc.2019.12.002.
69. Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids.
S. Nakano, K. Kozuka, Y. Minamino, H. Karasuda, F. Hasebe, and S. Ito,

Commun. Chem., 3, 181 (2020)

DOI: 10.1038/s42004-020-00432-8
68. Guanidyl modification of the 1-azabicyclo[3.1.0]hexane ring in ficellomycin essential for its biological activity.
S. Kurosawa, K. Matsuda, F. Hasebe, T. Shiraishi, K. Shin-ya, T. Kuzuyama, and M. Nishiyama,

Org. Biomol. Chem., 18, 5137-5144 (2020)

DOI: 10.1039/d0ob00339e
67. Off-loading mechanism of products in polyunsaturated fatty acid synthases.
S. Hayashi, Y. Ogasawara, Y. Satoh, C. Maruyama, Y. Hamano, and T. Dairi,

ACS Chem. Biol., 15, 651-656 (2020).

DOI: 10.1021/acschembio.0c00075.
66. Moldable material from ε-poly-L-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex.
K. Ushimaru, Y. Hamano, T. Morita, T. Fukuoka,

ACS Omega, 4, 9756–9762 (2019).

DOI: 10.1021/acsomega.9b00968.
65. In vitro characterization of MitE and MitB: Formation of N-acetylglucosaminyl-3-amino-5- hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins.
Y. Ogasawara, Y. Nakagawa, C. Maruyama, Y. Hamano, and T. Dairi,

Bioorg. Med. Chem. Lett., 29, 2076-2078 (2019).

DOI: 10.1016/j.bmcl.2019.07.009.
64. Control mechanism for carbon chain length in polyunsaturated fatty acid synthases.
S. Hayashi, M. Naka, K. Ikeuchi, M. Ohtsuka, K. Kobayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi,

Angew. Chem. Int. Ed. Engl., 58, 6605-6610 (2019).

DOI: 10.1002/anie.201900771.
63. Control mechanism for cis double-bond formation by polyunsaturated fatty-acid synthases.
S. Hayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi,

Angew. Chem. Int. Ed. Engl., 58, 2326-2330 (2019).

DOI: 10.1002/anie.201812623.
62. Deracemization and Stereoinversion to Aromatic D-Amino Acid Derivatives with Ancestral L-Amino Acid Oxidase.
S. Nakano, Y. Minamino, F. Hasebe, and S. Ito,

ACS Catal., 11, 10152-10158 (2019)

DOI: 10.1021/acscatal.9b03418
61. Immunosuppressive effect of a non-proteinogenic amino acid from Streptomyces through inhibiting allogeneic T cell proliferation.
T. Yashiro, F. Sakata, T. Sekimoto, T. Shirai, F. Hasebe, K. Matsuda, S. Kurosawa, S. Suzuki, K. Nagata, K. Kasakura, M. Nishiyama, and C. Nishiyama,

Biosci. Biotechnol. Biochem., 83, 1111-1116 (2019)

DOI: 10.1080/09168451.2019.1591262
60. Draft genome sequence of the most traditional ε-poly-L-lysine producer, Streptomyces albulus NBRC14147.
K. Yamanaka, Y. Hamano,

Microbiol. Resour. Announc., 8, e01515-18 (2019).

DOI: 10.1128/MRA.01515-18.
59. Partition of amines and lysine oligomers between organic solvent and water under a controlled interfacial potential difference.
H. Katano, M. Maruyama, Y. Kuroda, K. Uematsu, C. Maruyama, Y. Hamano,

J. Electroanal. Chem., 820, 97-102 (2018).

DOI: https://doi.org/10.1016/j.jelechem.2018.05.001
58. Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis.
K. Kawabata, N. Baba, T. Sakano, Y. Hamano, S. Taira, A. Tamura, S. Baba, M. Natsume, T. Ishii, S. Murakami, and H. Ohigash,

Biosci. Biotechnol. Biochem., 82, 689-697 (2018).

DOI: 10.1080/09168451.2017.1401916.
57. Promotion effect of streptothricin on a glucose oxidase enzymatic reaction and its application to a colorimetric assay.
K. Uematsu, T. Ueno, H. Kawasaki, C. Maruyama, Y. Hamano, and H. Katano,

Anal. Sci., 34, 143-148 (2018).

DOI: 10.2116/analsci.34.143.
56. Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis.
H. Niikura, C. Maruyama, Y. Ogasawara, K. Shin-ya, T. Dairi, and Y. Hamano,

J. Biosci. Bioeng., 125, 148-154 (2018).

DOI: 10.1016/j.jbiosc.2017.09.004.
55. Bacterial enzymes catalyzing the synthesis of 1,8-dihydroxynaphthalene, a key precursor of dihydroxynaphthalene melanin, from Sorangium cellulosum.
Y. Sone, S. Nakamura, M. Sasaki, F. Hasebe, S. Y. Kim, and N. Funa,

Appl. Environ. Microbiol., 84, e00258-18 (2018)

 
DOI: 10.1128/AEM.00258-18
54. Colorimetric microtiter plate assay of polycationic aminoglycoside antibiotics in culture broth using amaranth.
H. Katano, Y. Kuroda, S. Taira, C. Maruyama, and Y. Hamano,

Anal. Sci., 33, 499-504 (2017).

DOI: 10.2116/analsci.33.499.
53. Genome Mining of Amino Group Carrier Protein-Mediated Machinery: Discovery and Biosynthetic Characterization of a Natural Product with Unique Hydrazone Unit.
K. Matsuda, F. Hasebe, Y. Shiwa, Y. Kanesaki, T. Tomita, H. Yoshikawa, K. Shin-ya, T. Kuzuyama, and M. Nishiyama,

ACS Chem. Biol., 12, 124-131 (2017)

DOI: 10.1021/acschembio.6b00818
52. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
S. Fujita, S. H. Cho, A. Yoshida, F. Hasebe, T. Tomita, T. Kuzuyama, and M. Nishiyama,

Biochem. and Biophys. Res. Commun., 491, 409-415 (2017)

DOI: 10.1016/j.bbrc.2017.07.088
51. Imaging mass spectrometry analysis of ubiquinol localization in the mouse brain following shortterm administration.
Y. Tatsuta, K. Kasai, C. Maruyama, Y. Hamano, K. Matsuo, H. Katano, and S. Taira,

Sci. Rep., 7, 12990 (2017).

DOI: 10.1038/s41598-017-13257-8.
50. Antimicrobial activity of ε-poly-L-lysine after forming a water-insoluble complex with an anionic surfactant.
K. Ushimaru, C. Maruyama, Y. Hamano, and H. Katano,

Biomacromolecules, 18, 1387-1392 (2017).

DOI: 10.1021/acs.biomac.7b00109.
49. Synthesis of (2S,3R,4R)-3,4-dihydroxyarginine and its inhibitory activity against nitric oxide synthase.
Y. Masuda, C. Maruyama, K. Kawabata, Y. Hamano, and T. Doi,

Tetrahedron, 72, 5602-5611 (2016).

DOI: https://doi.org/10.1016/j.tet.2016.07.050
48. Amino-group carrier-protein-mediated secondary metabolite biosynthesis in Streptomyces.
F. Hasebe, K. Matsuda, T. Shiraishi, Y. Futamura, T. Nakano, T. Tomita, K. Ishigami, H. Taka, R. Mineki, T. Fujimura, H. Osada, T. Kuzuyama, and M. Nishiyama,

Nature Chem. Biol., 12, 967-972 (2016)

DOI: 10.1038/nchembio.2181
47. Separation of streptothricin antibiotics from culture broth with colorimetric determination using dipicrylamine.
H. Katano, Y. Kuroda, C. Maruyama, and Y. Hamano,

Anal. Sci., 32, 1101-1104 (2016).

DOI: 10.2116/analsci.32.1101.
46. Colorimetric method to detect ε-poly-L-lysine using glucose oxidase.
K. Uematsu, T. Ueno, K. Ushimaru, C. Maruyama, Y. Hamano, and H. Katano,

J. Biosci. Bioeng., 122, 513-518 (2016).

DOI: 10.1016/j.jbiosc.2016.03.005.
45. tRNA-dependent aminoacylation of an amino-sugar intermediate in the biosynthesis of a streptothricin-related antibiotic.
C. Maruyama, H. Niikura, M. Izumikawa, J. Hashimoto, K. Shin-ya, M. Komatsu, H. Ikeda, M. Kuroda, T. Sekizuka, J. Ishikawa, Y. Hamano,

Appl. Environ. Microbiol., 82, 3640-3648 (2016).

DOI: 10.1128/AEM.00725-16.
44. Colorimetric detection of the adenylation activity in nonribosomal peptide synthetase.
C. Maruyama, H. Niikura, M. Takakuwa, H. Katano, and Y. Hamano,

Methods Mol. Biol., 1401, 77-84 (2016).

DOI: 10.1007/978-1-4939-3375-4_5.
43. Ion-transfer voltammetry of streptothricin antibiotics with differently sized lysine oligomers at a nitrobenzene | water interface.
K. Uematsu, C. Maruyama, Y. Hamano, and H. Katano,

J. Electroanal. Chem., 754, 143-147 (2015).

DOI: 10.1016/j.jelechem.2015.07.003
42. Separation and purification of ε-poly-L-lysine with its colorimetric determination using dipicrylamine.
H. Katano, Y. Kasahara, K. Ushimaru, C. Maruyama, and Y. Hamano,

Anal. Sci., 31, 1273-1277 (2015).

DOI: 10.2116/analsci.31.1273.
41. Heterologous production of hyaluronic acid in an ε-poly-L-lysine producer, Streptomyces albulus.
T. Yoshimura, N. Shibata, Y. Hamano, and K. Yamanaka,

Appl. Environ. Microbiol., 81, 3631-3640 (2015).

DOI: 10.1128/AEM.00269-15.
40. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin.
M. Noike, T. Matsui, K. Ooya, I. Sasaki, S. Ohtaki, Y. Hamano, C. Maruyama, J. Ishikawa, Y. Satoh, H. Ito, H. Morita, and T. Dairi,

Nature Chem. Biol., 11, 71-76 (2015).

DOI: 10.1038/nchembio.1697
39. ε-Poly-L-lysine peptide-chain length regulated by the linkers connecting the transmembrane domains of ε-poly-L-lysine synthetase.
Y. Hamano, N. Kito, A. Kita, Y. Imokawa, K. Yamanaka, C. Maruyama, H. Katano,

Appl. Environ. Microbiol., 80, 4993-5000 (2014).

DOI: 10.1128/AEM.01201-14
38. Voltammetric study of the transfer of ε-poly-L-lysine at nitrobenzene | water interfase.
K. Uematsu, Y. Minami, C. Maruyama, Y. Hamano, H. Katano,

J. Electroanal. Chem., 719, 138-142 (2014).

DOI: 10.1016/j.jelechem.2014.02.015
37. Analytical methods for the detection and purification of ε-poly-L-lysine for studying biopolymer synthetases, and bioelectroanalysis methods for its functional evaluation.
H. Katano, K. Uematsu, C. Maruyama, and Y. Hamano,

 Anal. Sci., 30, 17-24 (2014).

DOI: 10.2116/analsci.30.17.
36. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s.
Y. Hamano, T. Arai, M. Ashiuchic, and K. Kino,

 Nat. Prod. Rep., 30, 1087-1097 (2013).

DOI: 10.1039/c3np70025a.
35. Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay.
H. Katano, H. Watanabe, M. Takakuwa, C. Maruyama, and Y. Hamano,

Anal. Sci., 29, 1095-1098 (2013).

DOI: 10.2116/analsci.29.1095.
34. Mutational analysis of the three tandem domains of ε-poly-L-lysine synthetase catalyzing L-lysine polymerization reaction.
N. Kito, C. Maruyama, K. Yamanaka, Y. Imokawa, T. Utagawa, and Y. Hamano,

J. Biosci. Bioeng., 115, 523-526 (2013).

DOI: 10.1016/j.jbiosc.2012.11.020.
33. Two ATP-Binding Cassette Transporters Involved in (S)-2-Aminoethyl-Cysteine Uptake in Thermus thermophilus.
Y. Kanemaru, F. Hasebe, T. Tomita, T. Kuzuyama, and M. Nishiyama,

J. Bacteriol., 195, 3845–3853 (2013)

DOI: 10.1128/JB.00202-13
32. Separation and purification of ε-poly-L-lysine from the culture broth based on precipitation with tetraphenylborate anion.
H. Katano, T. Yoneoka, N. Kito, C. Maruyama, and Y. Hamano,

Anal. Sci., 28, 1153-1157 (2012).

DOI: 10.2116/analsci.28.1153.
31. Molecular breeding of a fungus producing a precursor diterpene suitable for semi-synthesis by dissection of the biosynthetic machinery.
M. Noike, Y. Ono, Y. Araki, R. Tanio, Y. Higuchi, H. Nitta, Y. Hamano, T. Toyomasu, T. Sassa, N. Kato, and T. Dairi,

PLos One, 7, e42090 (2012).

DOI: 10.1371/journal.pone.0042090.
30. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis.
C. Maruyama, J. Toyoda, Y. Kato, M. Izumikawa, M. Takagi, K. Shin-ya, H. Katano, T. Utagawa, and Y. Hamano,

Nature Chem. Biol., 8, 791-797 (2012).

DOI: 10.1038/nchembio.1040.
29. An enzyme catalyzing O-prenylation of the glucose moiety of fusicoccin A, a diterpene glucoside produced by the fungus Phomopsis amygdali.
M. Noike, C. Liu, Y. Ono, Y. Hamano, T. Toyomasu, T. Sassa, N. Kato, and T. Dairi,

Chembiochem, 13, 566-573 (2012).

DOI: 10.1002/cbic.201100725.
28. Assay of enzymes forming AMP+PPi by the pyrophosphate determination based on the formation of 18-molybdopyrophosphate.
H. Katano, R. Tanaka, C. Maruyama, and Y. Hamano,

Anal. Biochem., 421, 308-312 (2012).

DOI: 10.1016/j.ab.2011.10.031.
27. Detection of biopolymer ε-poly-L-lysine with molybdosilicate anion for screening of the synthetic enzymes.
H. Katano, C. Maruyama, and Y. Hamano,

Int. J. Polym. Anal. Charact., 16, 542-550 (2011)

DOI: https://doi.org/10.1080/1023666X.2011.620289
26. Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-L-lysine.
Y. Hamano,

Biosci. Biotech. Biochem., 75, 1226-1233 (2011)

DOI: 10.1271/bbb.110201.
25. Development of a recombinant ε-poly-L-lysine synthetase expression system to perform mutation analysis.
K. Yamanaka, N. Kito, A. Kita, Y. Imokawa, C. Maruyama, T. Utagawa, and Y. Hamano,

 J. Biosci. Bioeng., 111, 646-649 (2011).

DOI: 10.1016/j.jbiosc.2011.01.020.
24. Biochemistry and enzymology of ε-poly-L-lysine biosynthesis, In: Y. Hamano, editor, Amino-acid homopolymers occurring in nature.
Y. Hamano,

Microbiology Monographs, vol. 15, Heidelberg, Springer, 2010

DOI: ISBN: 978-3-642-12453-2
23. Biotechnological production of ε-poly-L-lysine for food and medical applications, In: Y. Hamano, editor, Amino-acid homopolymers occurring in nature.
K. Yamanaka and Y. Hamano,

Microbiology Monographs, vol. 15, Heidelberg, Springer, 2010

DOI: ISBN: 978-3-642-12453-2
22. Analysis of the Lactobacillus metabolic pathway
M. Kuratsu, Y. Hamano, and T. Dairi,

Appl. Environ. Microbiol., 76, 7299-7301 (2010).

DOI: 10.1128/AEM.01514-10.
21. Mechanism of ε-poly-L-lysine production and accumulation revealed by identification and analysis of an ε-poly-L-lysine-degrading enzyme.
K. Yamanaka, N. Kito, Y. Imokawa, C. Maruyama, T. Utagawa, and Y. Hamano,

Appl. Environ. Microbiol., 76, 5669-5675 (2010).

DOI: 10.1128/AEM.00853-10.
20. The biological function of the bacterial isochorismatase-like hydrolase SttH.
C. Maruyama and Y. Hamano,

Biosci. Biotech. Biochem., 73, 2494-2500 (2009).

DOI: 10.1271/bbb.90499.
19. Selective toxicity alteration of a highly toxic antibiotic by an enzyme catalyzing antibiotic modification.
Y. Hamano,

Actinomycetologica, 22, 50-55 (2008)

DOI: https://doi.org/10.3209/saj.SAJ220201
18. ε-poly-L-lysine dispersity is controlled by a highly unusual non-ribosomal peptide synthetase.
K. Yamanaka*, C. Maruyama, H. Takagi, and Y. Hamano*,

(*These authors contributed equally to this research.)

Nature Chem. Biol., 4, 766-772 (2008).

DOI: 10.1038/nchembio.125.
17. ε-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase.
Y. Hamano, I. Nicchu, T. Shimizu, Y. Onji, J. Hiraki, and H.Takagi,

Appl. Microbiol. Biotechnol., 76, 873-882 (2007).

DOI: 10.1007/s00253-007-1052-3.
16. Desensitization of feedback inhibition of the yeast γ-glutamyl kinase enhances proline accumulation and freezing tolerance.
T. Sekine, A. Kawaguchi, Y. Hamano, and H. Takagi,

 Appl. Environ. Microbiol., 73, 4011-4019 (2007).

DOI: 10.1128/AEM.00730-07.
15. Construction of a knockout mutant of the streptothricin-resistance gene in Streptomyces albulus by electroporation.
Y. Hamano, C. Maruyama, and H. Kimoto,

Actinomycetologica, 20, 35-41 (2006).

DOI: https://doi.org/10.3209/saj.20.35
14. A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacterial-specific.
Y. Hamano, N. Matsuura, M. Kitamura, and H.Takagi,

J. Biol. Chem., 281, 16842-16848 (2006).

DOI: 10.1074/jbc.M602294200.
13. Biological function of the pld gene product that degrades ε-poly-L-lysine in Streptomyces albulus.
Y. Hamano, T. Yoshida, M. Kito, S. Nakamori, T. Nagasawa, and H. Takagi,

Appl. Microbiol. Biotechnol., 72, 173-181 (2006).

DOI: 10.1007/s00253-006-0396-4.
12. Development of gene delivery systems for the ε-poly-L-lysine producer, Streptomyces albulus.
Y. Hamano, I. Nicchu, Y. Hoshino, T. Kawai, S. Nakamori, and H. Takagi,

J. Biosci. Bioeng., 99, 636-641 (2005).

DOI: 10.1263/jbb.99.636.
11. Overexpression and characterization of an aminoglycoside 6′-N-acetyltransferase with broad specificity from an ε-poly-L-lysine producer, Streptomyces albulus IFO14147.
Y. Hamano, Y. Hoshino, S. Nakamori, and H. Takagi,

 J. Biochem., 136, 517-524 (2004).

DOI: 10.1093/jb/mvh146.
10. Biosynthesis and structural revision of neomarinone.
J. A. Kalaitzis*, Y. Hamano*, G. Nilsen, and B. S. Moore,

(*These authors contributed equally to this research.)

Org. Lett., 5, 4449-4452 (2003).

DOI: 10.1021/ol035748b.
9. A new approach for the investigation of isoprenoid biosynthesis featuring pathway switching, deuterium hyperlabeling, and 1H NMR spectroscopy. The reaction mechanism of a novel Streptomyces diterpene cyclase.
T. Eguchi, Y. Dekishima, Y. Hamano, T. Dairi, H. Seto, and K. Kakinuma,

J. Org. Chem., 68, 5433-5438 (2003).

DOI: 10.1021/jo026728a.
8. Interconversion of the product specificity of type I eubacterial farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase through one amino acid substitution.
T. Kawasaki, Y. Hamano, T. Kuzuyama, N. Itoh, H. Seto, and T. Dairi,

J. Biochem., 133, 83-91 (2003).

DOI: 10.1093/jb/mvg002.
7. Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, Terpentecin.
Y. Hamano, T. Kuzuyama, N. Itoh, K. Furihata, H. Seto, and T. Dairi,

J. Biol., Chem., 277, 37098-37104 (2002).

DOI: 10.1074/jbc.M206382200.
6. Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain.
Y. Hamano, T. Dairi, M. Yamamoto, T. Kuzuyama, N. Itoh, and H. Seto,

Biosci. Biotech. Biochem., 66, 808-819 (2002).

DOI: 10.1271/bbb.66.808.
5. Eubacterial diterpene cyclase genes essential for production of isoprenoid antibiotic-terpentecin.
T. Dairi, Y. Hamano, T. Kuzuyama, N. Itoh, K. Furihata, and H. Seto,

J. Bacteriol., 183, 6085-6094 (2001).

DOI: 10.1128/JB.183.20.6085-6094.2001.
4. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain.
Y. Hamano, T. Dairi, M. Yamamoto, T.i Kawasaki, K. Kaneda, T. Kuzuyama, N. Itoh, and H. Seto,

Biosci. Biotech. Biochem., 65, 1627-1635 (2001).

DOI: 10.1271/bbb.65.1627.
3. Development of a self-cloning system for Actinomadura verrucosospora and identification of polyketide synthase gene essential for production of the angucyclic antibiotic pradimicin.
T. Dairi, Y. Hamano, T. Furumai, and T. Oki,

Appl. Environ. Microbiol., 65, 2703-2709 (1999).

DOI: 10.1128/AEM.65.6.2703-2709.1999.
2. Cloning and nucleotide sequence of the putative polyketide synthase genes for pradimicin biosynthesis from Actinomadura hibisca.
T. Dairi, Y. Hamano, Y. Igarashi, T. Furumai, and T. Oki,

Biosci. Biotech. Biochem., 61, 1445-1453 (1997).

DOI: 10.1271/bbb.61.1445.
1. Protoplasting and regeneration of strain belonging to the genus Actinomadura.
T. Dairi, Y. Hamano, Y. Igarashi, T. Furumai, and T. Oki,

Actinomycetologica, 11, 1-5 (1997).

DOI: https://doi.org/10.3209/saj.11_1
95. Discovery of a novel methionine biosynthetic route via O-phospho-l-homoserine.
F. Hasebe, K. Adachi, C. Maruyama, Y. Hamano  

Appl. Environ. Microbiol., In press (2024)

DOI: 10.1128/aem.01247-24
94. Ion transfer mechanism of fluorescence-labeled octa-arginine on model biomembrane surfaces.
H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano, H. Nagatani  

J. ELECTROANAL. CHEM., Volume 970, 118545 (2024)

DOI: 10.1016/j.jelechem.2024.118545
93. Cell-penetrating activity of a short-chain ε-poly-L-α- lysine.
K. Kaneda, Y. Takeuchi, K. Yamanaka, F. Hasebe, C. Maruyama & Y. Hamano,  

J. Biosci. Bioeng., 138, 249-253 (2024)

DOI: 10.1016/j.jbiosc.2024.06.006
92. Separation of an ε-poly-L-lysine derivative by solvent extraction under a controlled interfacial potential difference.
H. Katano, M. Maruyama, K. Uematsu, C. Maruyama & Y. Hamano,  

Anal. Sci., 40(1), 47-52 (2024)

DOI: 10.1007/s44211-023-00428-z
91. Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides.
W. Xiao, T. Tsunoda, C. Maruyama, Y. Hamano, Y. Ogasawara & T. Dairi,  

Biosci. Biotechnol. Biochem., 87(11), 1316-1322 (2023)

DOI: 10.1093/bbb/zbad106
90. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis.
C. Maruyama & Y. Hamano,  

Methods Mol. Biol., 2670, 3-16 (2023)

DOI: 10.1007/978-1-0716-3214-7_1
89. Phase transfer mechanisms of fluorophore-labeled cell-penetrating peptide ε-poly-L-α-lysine at liquid|liquid interfaces.
H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano & H. Nagatani,  

Electrochimica Acta, Available online 22 June, 142769 (2023)

DOI: 10.1016/j.electacta.2023.142769
88. Constitutive and high gene expression in the diaminopimelate pathway accelerates ε-poly-L-lysine production in Streptomyces albulus.
F. Hasebe, K. Adachi, K. Yamanaka, T. Oikawa, C. Maruyama & Y. Hamano,  

J. Antibiot., 76(9), 522-531 (2023)

DOI: 10.1038/s41429-023-00636-9
87. N-Formimidoylation/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry.
YL. Wang, CY. Chang, NS. Hsu, IW. Lo, KH. Lin, CL. Chen, CF. Chang, ZC. Wang, Y. Ogasawara, T. Dairi, C. Maruyama, Y. Hamano, TL. Li,  

Nature Communications., 14, 2528 (2023)

DOI: 10.1038/s41467-023-38218-w
86. Mechanisms of Sugar Aminotransferase-like Enzymes to Synthesize Stereoisomers of Non-proteinogenic Amino Acids in Natural Product Biosynthesis.
S. Kurosawa, H. Okamura, A. Yoshida, T. Tomita, Y. Sone, F. Hasebe, T. Shinada, H. Takikawa, S. Kosono, M. Nishiyama,

ACS Chem. Biol., 18(2), 385-395 (2023)

DOI: 10.1021/acschembio.2c00823
85. Mechanism of S-Adenosyl-l-methionine C-Methylation by Cobalamin-dependent Radical S-Adenosyl-l-methionine Methylase in 1-Amino-2-methylcyclopropanecarboxylic Acid Biosynthesis.
F. Kudo, A. Minato, S. Sato, N. Nagano, C. Maruyama, Y. Hamano, J. Hashimoto, I. Kozone, K. Shin-ya, and T. Eguchi,

Org. Lett., 24(49), 8975-8979 (2022)

DOI: 10.1021/acs.orglett.2c03555
84. Reaction Mechanism of Ancestral l-Lys α-Oxidase from Caulobacter Species Studied by Biochemical, Structural, and Computational Analysis.
T. Motoyama, Y. Yamamoto, C. Ishida, F. Hasebe, Y. Kawamura, Y. Shigeta, S. Ito, and S. Nakano,

ACS Omega, 7(48), 44407-44419 (2022)

DOI: 10.1021/acsomega.2c06334
83. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.
Y. Takeuchi, K. Ushimaru, K. Kaneda, C. Maruyama, T. Ito, K. Yamanaka, Y. Ogasawara, H. Katano, Y. Kato, T. Dairi, Y. Hamano,

Commun. Biol., 5, 1132 (2022)

DOI: 10.1038/s42003-022-04110-4
82. Bioavailability of Tauropine After Oral Ingestion in Mouse.
T. Ito, K. H. Nguyen, C. Maruyama, Y. Hamano, S. Murakami, S. W. Schaffer,

Adv. Exp. Med. Biol., 1370, 137-142 (2022)

DOI: 10.1007/978-3-030-93337-1_13
81. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination.
S. Kurosawa, F. Hasebe, H. Okamura, A. Yoshida, K. Matsuda, Y. Sone, T. Tomita, T. Shinada, H. Takikawa, T. Kuzuyama, S. Kosono, M. Nishiyama,

J. Am. Chem. Soc., 144, 16164−16170 (2022)

DOI: 10.1021/jacs.2c07243
80. Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity.
T. Okamoto, K. Yamanaka, Y. Hamano, S. Nagano, T. Hino,

Biochem. and Biophys. Res. Commun., 596, 43-48 (2022)

DOI: 10.1016/j.bbrc.2022.01.053
79. Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis.
K. Yamanaka, R. Ozaki, Y. Hamano, T. Oikawa,

Front Microbiol., 12, 686023-686023, (2021)

DOI: 10.3389/fmicb.2021.686023
78. MetW regulates the enzymatic activity of MetX in Pseudomonas.
F. Hasebe,

Biosci. Biotechnol. Biochem., 85, 351-358 (2021)

DOI: 10.1093/bbb/zbaa044
77. CRISPR/Cas9-mediated disruption of the PYRROLIDINE KETIDE SYNTHASE gene reduces the accumulation of tropane alkaloids in Atropa belladonna hairy roots.
F. Hasebe, H. Yuba, T. Hashimoto, K. Saito, N. Funa, and T. Shoji,

Biosci. Biotechnol. Biochem., 85, 2404–2409 (2021)

DOI: 10.1093/bbb/zbab165
76. Reconstruction of hyper‐thermostable ancestral L‐amino acid oxidase to perform deracemization to D‐amino acids.
C. Ishida, R. Miyata, F. Hasebe, A. Miyata, S. Kumazawa, S. Ito, and S. Nakano,

ChemCatChem., 13, 5228-5235 (2021)

DOI: 10.1002/cctc.202101296
73. tRNA-dependent amide bond-forming enzymes in peptide natural product biosynthesis.
C. Maruyama and Y. Hamano,

Curr. Opin. Chem. Biol., 59, 164-171 (2020)

DOI: 10.1016/j.cbpa.2020.08.002.
72. The stereocontrolled biosynthesis of mirror-symmetric 2,4-diaminobutyric acid homopolymers is critically governed by adenylation activations.
K. Yamanaka, H. Fukumoto, M. Takehara, Y. Hamano, T. Oikawa,

ACS Chem. Biol., 7, 1967-1973 (2020)

DOI: 10.1021/acschembio.0c00321.
71. C-Methylation of S-adenosyl-L-methionine occurs prior to cyclopropanation in the biosynthesis of 1-amino-2-methylcyclopropanecarboxylic acid (norcoronamic acid) in a bacterium.
C. Maruyama, Y. Chinone, S. Sato, F. Kudo, K. Ohsawa, J. Kubota, J. Hashimoto, I. Kozone, T. Doi, K. Shin-Ya, T. Eguchi, and Y. Hamano,

Biomolecules, 10, E775 (2020).

DOI: 10.3390/biom10050775.
70. Enhancement of metabolic flux toward ε-poly-L-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus.
K. Yamanaka, Y. Hamano, and T. Oikawa,

J. Biosci. Bioeng., 129, 558-564 (2020).

DOI: 10.1016/j.jbiosc.2019.12.002.
69. Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids.
S. Nakano, K. Kozuka, Y. Minamino, H. Karasuda, F. Hasebe, and S. Ito,

Commun. Chem., 3, 181 (2020)

DOI: 10.1038/s42004-020-00432-8
68. Guanidyl modification of the 1-azabicyclo[3.1.0]hexane ring in ficellomycin essential for its biological activity.
S. Kurosawa, K. Matsuda, F. Hasebe, T. Shiraishi, K. Shin-ya, T. Kuzuyama, and M. Nishiyama,

Org. Biomol. Chem., 18, 5137-5144 (2020)

DOI: 10.1039/d0ob00339e
67. Off-loading mechanism of products in polyunsaturated fatty acid synthases.
S. Hayashi, Y. Ogasawara, Y. Satoh, C. Maruyama, Y. Hamano, and T. Dairi,

ACS Chem. Biol., 15, 651-656 (2020).

DOI: 10.1021/acschembio.0c00075.
66. Moldable material from ε-poly-L-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex.
K. Ushimaru, Y. Hamano, T. Morita, T. Fukuoka,

ACS Omega, 4, 9756–9762 (2019).

DOI: 10.1021/acsomega.9b00968.
65. In vitro characterization of MitE and MitB: Formation of N-acetylglucosaminyl-3-amino-5- hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins.
Y. Ogasawara, Y. Nakagawa, C. Maruyama, Y. Hamano, and T. Dairi,

Bioorg. Med. Chem. Lett., 29, 2076-2078 (2019).

DOI: 10.1016/j.bmcl.2019.07.009.
64. Control mechanism for carbon chain length in polyunsaturated fatty acid synthases.
S. Hayashi, M. Naka, K. Ikeuchi, M. Ohtsuka, K. Kobayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi,

Angew. Chem. Int. Ed. Engl., 58, 6605-6610 (2019).

DOI: 10.1002/anie.201900771.
63. Control mechanism for cis double-bond formation by polyunsaturated fatty-acid synthases.
S. Hayashi, Y. Satoh, Y. Ogasawara, C. Maruyama, Y. Hamano, T. Ujihara, and T. Dairi,

Angew. Chem. Int. Ed. Engl., 58, 2326-2330 (2019).

DOI: 10.1002/anie.201812623.
62. Deracemization and Stereoinversion to Aromatic D-Amino Acid Derivatives with Ancestral L-Amino Acid Oxidase.
S. Nakano, Y. Minamino, F. Hasebe, and S. Ito,

ACS Catal., 11, 10152-10158 (2019)

DOI: 10.1021/acscatal.9b03418
61. Immunosuppressive effect of a non-proteinogenic amino acid from Streptomyces through inhibiting allogeneic T cell proliferation.
T. Yashiro, F. Sakata, T. Sekimoto, T. Shirai, F. Hasebe, K. Matsuda, S. Kurosawa, S. Suzuki, K. Nagata, K. Kasakura, M. Nishiyama, and C. Nishiyama,

Biosci. Biotechnol. Biochem., 83, 1111-1116 (2019)

DOI: 10.1080/09168451.2019.1591262
60. Draft genome sequence of the most traditional ε-poly-L-lysine producer, Streptomyces albulus NBRC14147.
K. Yamanaka, Y. Hamano,

Microbiol. Resour. Announc., 8, e01515-18 (2019).

DOI: 10.1128/MRA.01515-18.
59. Partition of amines and lysine oligomers between organic solvent and water under a controlled interfacial potential difference.
H. Katano, M. Maruyama, Y. Kuroda, K. Uematsu, C. Maruyama, Y. Hamano,

J. Electroanal. Chem., 820, 97-102 (2018).

DOI: https://doi.org/10.1016/j.jelechem.2018.05.001
58. Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis.
K. Kawabata, N. Baba, T. Sakano, Y. Hamano, S. Taira, A. Tamura, S. Baba, M. Natsume, T. Ishii, S. Murakami, and H. Ohigash,

Biosci. Biotechnol. Biochem., 82, 689-697 (2018).

DOI: 10.1080/09168451.2017.1401916.
57. Promotion effect of streptothricin on a glucose oxidase enzymatic reaction and its application to a colorimetric assay.
K. Uematsu, T. Ueno, H. Kawasaki, C. Maruyama, Y. Hamano, and H. Katano,

Anal. Sci., 34, 143-148 (2018).

DOI: 10.2116/analsci.34.143.
56. Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis.
H. Niikura, C. Maruyama, Y. Ogasawara, K. Shin-ya, T. Dairi, and Y. Hamano,

J. Biosci. Bioeng., 125, 148-154 (2018).

DOI: 10.1016/j.jbiosc.2017.09.004.
55. Bacterial enzymes catalyzing the synthesis of 1,8-dihydroxynaphthalene, a key precursor of dihydroxynaphthalene melanin, from Sorangium cellulosum.
Y. Sone, S. Nakamura, M. Sasaki, F. Hasebe, S. Y. Kim, and N. Funa,

Appl. Environ. Microbiol., 84, e00258-18 (2018)

 
DOI: 10.1128/AEM.00258-18
54. Colorimetric microtiter plate assay of polycationic aminoglycoside antibiotics in culture broth using amaranth.
H. Katano, Y. Kuroda, S. Taira, C. Maruyama, and Y. Hamano,

Anal. Sci., 33, 499-504 (2017).

DOI: 10.2116/analsci.33.499.
53. Genome Mining of Amino Group Carrier Protein-Mediated Machinery: Discovery and Biosynthetic Characterization of a Natural Product with Unique Hydrazone Unit.
K. Matsuda, F. Hasebe, Y. Shiwa, Y. Kanesaki, T. Tomita, H. Yoshikawa, K. Shin-ya, T. Kuzuyama, and M. Nishiyama,

ACS Chem. Biol., 12, 124-131 (2017)

DOI: 10.1021/acschembio.6b00818
52. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
S. Fujita, S. H. Cho, A. Yoshida, F. Hasebe, T. Tomita, T. Kuzuyama, and M. Nishiyama,

Biochem. and Biophys. Res. Commun., 491, 409-415 (2017)

DOI: 10.1016/j.bbrc.2017.07.088
51. Imaging mass spectrometry analysis of ubiquinol localization in the mouse brain following shortterm administration.
Y. Tatsuta, K. Kasai, C. Maruyama, Y. Hamano, K. Matsuo, H. Katano, and S. Taira,

Sci. Rep., 7, 12990 (2017).

DOI: 10.1038/s41598-017-13257-8.
50. Antimicrobial activity of ε-poly-L-lysine after forming a water-insoluble complex with an anionic surfactant.
K. Ushimaru, C. Maruyama, Y. Hamano, and H. Katano,

Biomacromolecules, 18, 1387-1392 (2017).

DOI: 10.1021/acs.biomac.7b00109.
49. Synthesis of (2S,3R,4R)-3,4-dihydroxyarginine and its inhibitory activity against nitric oxide synthase.
Y. Masuda, C. Maruyama, K. Kawabata, Y. Hamano, and T. Doi,

Tetrahedron, 72, 5602-5611 (2016).

DOI: https://doi.org/10.1016/j.tet.2016.07.050
48. Amino-group carrier-protein-mediated secondary metabolite biosynthesis in Streptomyces.
F. Hasebe, K. Matsuda, T. Shiraishi, Y. Futamura, T. Nakano, T. Tomita, K. Ishigami, H. Taka, R. Mineki, T. Fujimura, H. Osada, T. Kuzuyama, and M. Nishiyama,

Nature Chem. Biol., 12, 967-972 (2016)

DOI: 10.1038/nchembio.2181
47. Separation of streptothricin antibiotics from culture broth with colorimetric determination using dipicrylamine.
H. Katano, Y. Kuroda, C. Maruyama, and Y. Hamano,

Anal. Sci., 32, 1101-1104 (2016).

DOI: 10.2116/analsci.32.1101.
46. Colorimetric method to detect ε-poly-L-lysine using glucose oxidase.
K. Uematsu, T. Ueno, K. Ushimaru, C. Maruyama, Y. Hamano, and H. Katano,

J. Biosci. Bioeng., 122, 513-518 (2016).

DOI: 10.1016/j.jbiosc.2016.03.005.
45. tRNA-dependent aminoacylation of an amino-sugar intermediate in the biosynthesis of a streptothricin-related antibiotic.
C. Maruyama, H. Niikura, M. Izumikawa, J. Hashimoto, K. Shin-ya, M. Komatsu, H. Ikeda, M. Kuroda, T. Sekizuka, J. Ishikawa, Y. Hamano,

Appl. Environ. Microbiol., 82, 3640-3648 (2016).

DOI: 10.1128/AEM.00725-16.
44. Colorimetric detection of the adenylation activity in nonribosomal peptide synthetase.
C. Maruyama, H. Niikura, M. Takakuwa, H. Katano, and Y. Hamano,

Methods Mol. Biol., 1401, 77-84 (2016).

DOI: 10.1007/978-1-4939-3375-4_5.
43. Ion-transfer voltammetry of streptothricin antibiotics with differently sized lysine oligomers at a nitrobenzene | water interface.
K. Uematsu, C. Maruyama, Y. Hamano, and H. Katano,

J. Electroanal. Chem., 754, 143-147 (2015).

DOI: 10.1016/j.jelechem.2015.07.003
42. Separation and purification of ε-poly-L-lysine with its colorimetric determination using dipicrylamine.
H. Katano, Y. Kasahara, K. Ushimaru, C. Maruyama, and Y. Hamano,

Anal. Sci., 31, 1273-1277 (2015).

DOI: 10.2116/analsci.31.1273.
41. Heterologous production of hyaluronic acid in an ε-poly-L-lysine producer, Streptomyces albulus.
T. Yoshimura, N. Shibata, Y. Hamano, and K. Yamanaka,

Appl. Environ. Microbiol., 81, 3631-3640 (2015).

DOI: 10.1128/AEM.00269-15.
40. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin.
M. Noike, T. Matsui, K. Ooya, I. Sasaki, S. Ohtaki, Y. Hamano, C. Maruyama, J. Ishikawa, Y. Satoh, H. Ito, H. Morita, and T. Dairi,

Nature Chem. Biol., 11, 71-76 (2015).

DOI: 10.1038/nchembio.1697
39. ε-Poly-L-lysine peptide-chain length regulated by the linkers connecting the transmembrane domains of ε-poly-L-lysine synthetase.
Y. Hamano, N. Kito, A. Kita, Y. Imokawa, K. Yamanaka, C. Maruyama, H. Katano,

Appl. Environ. Microbiol., 80, 4993-5000 (2014).

DOI: 10.1128/AEM.01201-14
38. Voltammetric study of the transfer of ε-poly-L-lysine at nitrobenzene | water interfase.
K. Uematsu, Y. Minami, C. Maruyama, Y. Hamano, H. Katano,

J. Electroanal. Chem., 719, 138-142 (2014).

DOI: 10.1016/j.jelechem.2014.02.015
37. Analytical methods for the detection and purification of ε-poly-L-lysine for studying biopolymer synthetases, and bioelectroanalysis methods for its functional evaluation.
H. Katano, K. Uematsu, C. Maruyama, and Y. Hamano,

 Anal. Sci., 30, 17-24 (2014).

DOI: 10.2116/analsci.30.17.
36. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s.
Y. Hamano, T. Arai, M. Ashiuchic, and K. Kino,

 Nat. Prod. Rep., 30, 1087-1097 (2013).

DOI: 10.1039/c3np70025a.
35. Colorimetric determination of pyrophosphate anion and its application to adenylation enzyme assay.
H. Katano, H. Watanabe, M. Takakuwa, C. Maruyama, and Y. Hamano,

Anal. Sci., 29, 1095-1098 (2013).

DOI: 10.2116/analsci.29.1095.
34. Mutational analysis of the three tandem domains of ε-poly-L-lysine synthetase catalyzing L-lysine polymerization reaction.
N. Kito, C. Maruyama, K. Yamanaka, Y. Imokawa, T. Utagawa, and Y. Hamano,

J. Biosci. Bioeng., 115, 523-526 (2013).

DOI: 10.1016/j.jbiosc.2012.11.020.
33. Two ATP-Binding Cassette Transporters Involved in (S)-2-Aminoethyl-Cysteine Uptake in Thermus thermophilus.
Y. Kanemaru, F. Hasebe, T. Tomita, T. Kuzuyama, and M. Nishiyama,

J. Bacteriol., 195, 3845–3853 (2013)

DOI: 10.1128/JB.00202-13
32. Separation and purification of ε-poly-L-lysine from the culture broth based on precipitation with tetraphenylborate anion.
H. Katano, T. Yoneoka, N. Kito, C. Maruyama, and Y. Hamano,

Anal. Sci., 28, 1153-1157 (2012).

DOI: 10.2116/analsci.28.1153.
31. Molecular breeding of a fungus producing a precursor diterpene suitable for semi-synthesis by dissection of the biosynthetic machinery.
M. Noike, Y. Ono, Y. Araki, R. Tanio, Y. Higuchi, H. Nitta, Y. Hamano, T. Toyomasu, T. Sassa, N. Kato, and T. Dairi,

PLos One, 7, e42090 (2012).

DOI: 10.1371/journal.pone.0042090.
30. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis.
C. Maruyama, J. Toyoda, Y. Kato, M. Izumikawa, M. Takagi, K. Shin-ya, H. Katano, T. Utagawa, and Y. Hamano,

Nature Chem. Biol., 8, 791-797 (2012).

DOI: 10.1038/nchembio.1040.
29. An enzyme catalyzing O-prenylation of the glucose moiety of fusicoccin A, a diterpene glucoside produced by the fungus Phomopsis amygdali.
M. Noike, C. Liu, Y. Ono, Y. Hamano, T. Toyomasu, T. Sassa, N. Kato, and T. Dairi,

Chembiochem, 13, 566-573 (2012).

DOI: 10.1002/cbic.201100725.
28. Assay of enzymes forming AMP+PPi by the pyrophosphate determination based on the formation of 18-molybdopyrophosphate.
H. Katano, R. Tanaka, C. Maruyama, and Y. Hamano,

Anal. Biochem., 421, 308-312 (2012).

DOI: 10.1016/j.ab.2011.10.031.
27. Detection of biopolymer ε-poly-L-lysine with molybdosilicate anion for screening of the synthetic enzymes.
H. Katano, C. Maruyama, and Y. Hamano,

Int. J. Polym. Anal. Charact., 16, 542-550 (2011)

DOI: https://doi.org/10.1080/1023666X.2011.620289
26. Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-L-lysine.
Y. Hamano,

Biosci. Biotech. Biochem., 75, 1226-1233 (2011)

DOI: 10.1271/bbb.110201.
25. Development of a recombinant ε-poly-L-lysine synthetase expression system to perform mutation analysis.
K. Yamanaka, N. Kito, A. Kita, Y. Imokawa, C. Maruyama, T. Utagawa, and Y. Hamano,

 J. Biosci. Bioeng., 111, 646-649 (2011).

DOI: 10.1016/j.jbiosc.2011.01.020.
24. Biochemistry and enzymology of ε-poly-L-lysine biosynthesis, In: Y. Hamano, editor, Amino-acid homopolymers occurring in nature.
Y. Hamano,

Microbiology Monographs, vol. 15, Heidelberg, Springer, 2010

DOI: ISBN: 978-3-642-12453-2
23. Biotechnological production of ε-poly-L-lysine for food and medical applications, In: Y. Hamano, editor, Amino-acid homopolymers occurring in nature.
K. Yamanaka and Y. Hamano,

Microbiology Monographs, vol. 15, Heidelberg, Springer, 2010

DOI: ISBN: 978-3-642-12453-2
22. Analysis of the Lactobacillus metabolic pathway
M. Kuratsu, Y. Hamano, and T. Dairi,

Appl. Environ. Microbiol., 76, 7299-7301 (2010).

DOI: 10.1128/AEM.01514-10.
21. Mechanism of ε-poly-L-lysine production and accumulation revealed by identification and analysis of an ε-poly-L-lysine-degrading enzyme.
K. Yamanaka, N. Kito, Y. Imokawa, C. Maruyama, T. Utagawa, and Y. Hamano,

Appl. Environ. Microbiol., 76, 5669-5675 (2010).

DOI: 10.1128/AEM.00853-10.
20. The biological function of the bacterial isochorismatase-like hydrolase SttH.
C. Maruyama and Y. Hamano,

Biosci. Biotech. Biochem., 73, 2494-2500 (2009).

DOI: 10.1271/bbb.90499.
19. Selective toxicity alteration of a highly toxic antibiotic by an enzyme catalyzing antibiotic modification.
Y. Hamano,

Actinomycetologica, 22, 50-55 (2008)

DOI: https://doi.org/10.3209/saj.SAJ220201
18. ε-poly-L-lysine dispersity is controlled by a highly unusual non-ribosomal peptide synthetase.
K. Yamanaka*, C. Maruyama, H. Takagi, and Y. Hamano*,

(*These authors contributed equally to this research.)

Nature Chem. Biol., 4, 766-772 (2008).

DOI: 10.1038/nchembio.125.
17. ε-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase.
Y. Hamano, I. Nicchu, T. Shimizu, Y. Onji, J. Hiraki, and H.Takagi,

Appl. Microbiol. Biotechnol., 76, 873-882 (2007).

DOI: 10.1007/s00253-007-1052-3.
16. Desensitization of feedback inhibition of the yeast γ-glutamyl kinase enhances proline accumulation and freezing tolerance.
T. Sekine, A. Kawaguchi, Y. Hamano, and H. Takagi,

 Appl. Environ. Microbiol., 73, 4011-4019 (2007).

DOI: 10.1128/AEM.00730-07.
15. Construction of a knockout mutant of the streptothricin-resistance gene in Streptomyces albulus by electroporation.
Y. Hamano, C. Maruyama, and H. Kimoto,

Actinomycetologica, 20, 35-41 (2006).

DOI: https://doi.org/10.3209/saj.20.35
14. A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacterial-specific.
Y. Hamano, N. Matsuura, M. Kitamura, and H.Takagi,

J. Biol. Chem., 281, 16842-16848 (2006).

DOI: 10.1074/jbc.M602294200.
13. Biological function of the pld gene product that degrades ε-poly-L-lysine in Streptomyces albulus.
Y. Hamano, T. Yoshida, M. Kito, S. Nakamori, T. Nagasawa, and H. Takagi,

Appl. Microbiol. Biotechnol., 72, 173-181 (2006).

DOI: 10.1007/s00253-006-0396-4.
12. Development of gene delivery systems for the ε-poly-L-lysine producer, Streptomyces albulus.
Y. Hamano, I. Nicchu, Y. Hoshino, T. Kawai, S. Nakamori, and H. Takagi,

J. Biosci. Bioeng., 99, 636-641 (2005).

DOI: 10.1263/jbb.99.636.
11. Overexpression and characterization of an aminoglycoside 6′-N-acetyltransferase with broad specificity from an ε-poly-L-lysine producer, Streptomyces albulus IFO14147.
Y. Hamano, Y. Hoshino, S. Nakamori, and H. Takagi,

 J. Biochem., 136, 517-524 (2004).

DOI: 10.1093/jb/mvh146.
10. Biosynthesis and structural revision of neomarinone.
J. A. Kalaitzis*, Y. Hamano*, G. Nilsen, and B. S. Moore,

(*These authors contributed equally to this research.)

Org. Lett., 5, 4449-4452 (2003).

DOI: 10.1021/ol035748b.
9. A new approach for the investigation of isoprenoid biosynthesis featuring pathway switching, deuterium hyperlabeling, and 1H NMR spectroscopy. The reaction mechanism of a novel Streptomyces diterpene cyclase.
T. Eguchi, Y. Dekishima, Y. Hamano, T. Dairi, H. Seto, and K. Kakinuma,

J. Org. Chem., 68, 5433-5438 (2003).

DOI: 10.1021/jo026728a.
8. Interconversion of the product specificity of type I eubacterial farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase through one amino acid substitution.
T. Kawasaki, Y. Hamano, T. Kuzuyama, N. Itoh, H. Seto, and T. Dairi,

J. Biochem., 133, 83-91 (2003).

DOI: 10.1093/jb/mvg002.
7. Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, Terpentecin.
Y. Hamano, T. Kuzuyama, N. Itoh, K. Furihata, H. Seto, and T. Dairi,

J. Biol., Chem., 277, 37098-37104 (2002).

DOI: 10.1074/jbc.M206382200.
6. Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain.
Y. Hamano, T. Dairi, M. Yamamoto, T. Kuzuyama, N. Itoh, and H. Seto,

Biosci. Biotech. Biochem., 66, 808-819 (2002).

DOI: 10.1271/bbb.66.808.
5. Eubacterial diterpene cyclase genes essential for production of isoprenoid antibiotic-terpentecin.
T. Dairi, Y. Hamano, T. Kuzuyama, N. Itoh, K. Furihata, and H. Seto,

J. Bacteriol., 183, 6085-6094 (2001).

DOI: 10.1128/JB.183.20.6085-6094.2001.
4. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain.
Y. Hamano, T. Dairi, M. Yamamoto, T.i Kawasaki, K. Kaneda, T. Kuzuyama, N. Itoh, and H. Seto,

Biosci. Biotech. Biochem., 65, 1627-1635 (2001).

DOI: 10.1271/bbb.65.1627.
3. Development of a self-cloning system for Actinomadura verrucosospora and identification of polyketide synthase gene essential for production of the angucyclic antibiotic pradimicin.
T. Dairi, Y. Hamano, T. Furumai, and T. Oki,

Appl. Environ. Microbiol., 65, 2703-2709 (1999).

DOI: 10.1128/AEM.65.6.2703-2709.1999.
2. Cloning and nucleotide sequence of the putative polyketide synthase genes for pradimicin biosynthesis from Actinomadura hibisca.
T. Dairi, Y. Hamano, Y. Igarashi, T. Furumai, and T. Oki,

Biosci. Biotech. Biochem., 61, 1445-1453 (1997).

DOI: 10.1271/bbb.61.1445.
1. Protoplasting and regeneration of strain belonging to the genus Actinomadura.
T. Dairi, Y. Hamano, Y. Igarashi, T. Furumai, and T. Oki,

Actinomycetologica, 11, 1-5 (1997).

DOI: https://doi.org/10.3209/saj.11_1